
1

Doflamingo
An light-weight monitoring system for Apache Hadoop

al
ph
ad
oo
p

2

TITLE Kafka/ Zookeeper Monitoring Module
built for Flamingo Ecosystem

DURATION March 13, 2016 ~ June 8, 2016

 CLIENT EXEM PRESENTER ALPHADOOP

_ Doflamingo

3

TEAM ALPHADOOP

YOUNGJAE CHANG [PM]
SEUNGHYO KANG
JARYONG LEE

_ Doflamingo

4_ Doflamingo

1. Project Overview

2. Requirements

3. Solution

4. Novelty

5. Contribution

6. Project Management

7. Demonstration

CONTENTS

5

PROJECT
OVERVIEW

PART_01

6_ Project Overview

Objective
Problem Statement

Useful Cases

_ OBJECTIVE

Collect Performance Metrics,
Visualize it, and
Integrate it with Flamingo.

7_ Project Overview

Objective
Problem Statement

Useful Cases

_ PROBLEM STATEMENT

Monitoring is critical to understand
Hadoop Ecosystem.

Flamingo lacks ability to monitor
Kafka/Zookeeper rather than nodes.

8_ Project Overview

Objective
Problem Statement

Useful Cases

_ PROBLEM STATEMENT

Is all system working properly?

Of Course!

Check this out!

Doflamingo

9_ Project Overview

Objective
Problem Statement

Useful Cases

_ USEFUL CASES #1

LinkedIn processes 172,000 messages a
second. It adds up to 10 billion messages
a day. It encounters many engineering
problems and they can only be captured
via custom built monitoring tools.

10_ Project Overview

Objective
Problem Statement

Useful Cases

_ USEFUL CASES #2

Netflix, as it now runs hundreds of clusters,
it became confusing for even experts to
understand how system works.

Why did my job run slower today than yesterday?
Can we expand the cluster to speed up my job?
What cluster did my job run on?
How do I get access to task logs?

Typical
Questions

11_ Project Overview

Objective
Problem Statement

Useful Cases

_ USEFUL CASES #3

Hadoop have been proved to have big
business implication, but the ease of
maintenance blocks it from being mainstream.
Hortonworks built Apache Ambari to solve the
problem and give a single point for customers
to work with.

12

PROJECT
REQUIREMENTS

PART_02

13_ Requirements

Functions
Won’t do

Constraints
External Interfaces
Quality Attributes

_ FUNCTIONS

1. Monitor and Report in Real-time

2. Visualize the metrics

3. Save metrics into Database

14_ Requirements

Functions
Won’t do

Constraints
External Interfaces
Quality Attributes

_ Doflamingo WILL NOT …

1. Control configuration

2. Alarm users

15_ Requirements

Functions
Won’t do

Constraints
External Interfaces
Quality Attributes

_ CONSTRAINTS

1. Doflamingo Backend
• should work on JVM
• should utilize Maven ecosystem
• should be integrated into Flamingo

2. Doflamingo Frontend
• should be built with Sencha ExtJS
• should communicate with WebSocket

16_ Requirements

Functions
Won’t do

Constraints
External Interfaces

Quality Attributes

_ External Interfaces: Inputs

1. Kafka Configuration [JSON]
• Kafka node ip / port

2. Zookeeper Configuration [JSON]
• Zookeeper node ip / port

3. RRD4J Configuration [JSON]
• Path to RRD4J database

17_ Requirements

Functions
Won’t do

Constraints
External Interfaces

Quality Attributes

_ External Interfaces: UI

1. Overview
• Can View Multiple Charts at Once,  

in Realtime.

2. Timeline
• Can Investigate certain Moment in the  

History.

18_ Requirements

Functions
Won’t do

Constraints
External Interfaces
Quality Attributes

_ SW Quality Attributes

M11 Requirement Compliance
M12 Requirement Traceability
M13 Requirement Change Rate
M21 Fault Density
M22 Bad Fix Rate
M31 Test Coverage

19

SOLUTION
PART_03

20

_ TECHNICAL DETAILS

[A] WHAT IS KAFKA?
A high-throughput distributed messaging system

Scalable
High-throughput
Distributable
Low response time
Save on data disk

BENEFITS

LinkedIn
Twitter
Netflix
Tumblr
Foursquare

USED IN

21

Summary
Background

Deep cuts
Thoughts

Realization
Silver-lining

_ TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?
Handles various errors in distributed systems.

Using name service to separate loads.
Using distributed lock to handle synchronization error
Error detection and recovery
Configuration management

Four Features

22_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ ARCHITECTURE

[A] WHAT IS KAFKA?
A high-throughput distributed messaging system

Scalable
High-throughput
Distributable
Low response time
Save on data disk

BENEFITS

LinkedIn
Twitter
Netflix
Tumblr
Foursquare

USED IN

23_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ ARCHITECTURE

[B] WHAT IS ZOOKEEPER?
Safe storage for distributed systems

Using name service to separate loads.
Using distributed lock to handle synchronization error
Error detection and recovery
Configuration management

Four Features

24_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

25_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ ARCHITECTURE

Zk.
MBeans

JMX

JMXTrans

Rrd4jWriterWebSocketWriter

RRD4JClient

Kafka
MBeans

JMX

WebSocket + STOMP

AJAX

API

TARGET

METRIC
COLLECTOR

VISUALIZATION STORAGE

26_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ METRIC COLLECTION

1. JMX protocol is used to extract metrics 
from target system.

2. JMXTrans schedule collection job 
every 2 seconds.

3. Subprocess calls writer classes.

27_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ METRIC STORAGE

1. JMXTrans calls Rrd4jWriter.

2. RRD4J saves metrics with several 
predetermined timescale.

3. RRD4J data is saved to a file.

28_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ COMMUNICATION

1. JMXTrans calls WebSocketWriter.

2. WebSocketWriter broadcasts data to all 
whom subscribes the topic.

3. Past data can be retrieved via  
AJAX call to RRD4J.

29_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ UI DESIGN

1. Sencha ExtJS is used as main framework.

2. SockJS and STOMP.js.

3. D3.js is used to draw charts.

30_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ UI DESIGN: TWO NEEDS

To ensure
the normal
operation of
the system

To find out
the cause of
abnormal
behavior

31_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ UI DESIGN: PAGE #1

32_ Solution

Architecture
Metric Collection

Metric Storage
Communication

UI Design

_ UI DESIGN: PAGE #2

33

NOVELTY
PART_04

34_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ PATENT RESEARCH

APPARATUS AND METHOD FOR MANAGING DATA STREAM
DISTRIBUTED PARALLEL PROCESSING SERVICE
KR 2013-0095910 A

Assignee
ETRI

35_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ PATENT RESEARCH

APPARATUS AND METHOD FOR ANALYZING BOTTLENECKS IN
DATA DISTRIBUTED PROCESSING SYSTEM
KR 2015-0050689 A

Assignee

SAMSUNG ELECTRONICS
SEOUL NATIONAL UNIV.

36_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ Sematext SPM

SPM KAFKA: CONSUMER LAG

37_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ Sematext SPM

1. SPM alert user when abnormal event  
occurs via anomaly detection.

2. Provide abundant set of metrics: ~100  
metrics are now being supported.

3. Integrated with Log Analyzer.

38_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ Kafka Offset Monitor

39_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ Kafka Offset Monitor

1. Concentrate on single metric:  
Offset Position of each topic.

2. The program also shows configuration  
of nodes participating in Kafka.

3. Built with python.

40_ Novelty

Patent Research
Sematext SPM

Kafka Offset Monitor
Comparison

_ COMPARISON

Features SPM Kafka Kafka Offset
Monitor Doflamingo

Communicate with
WebSocket? ✕ ✕ O

Can view past trends? ✕ ✕ O

Work with Flamingo? ✕ ✕ O

Open Source? ✕ O O

41

CONTRIBUTIONS
PART_05

42_ Contributions

Trends
Obstacles

Positioning
Future

_ TRENDS: $$ WITH BIG DATA

43_ Contributions _ TRENDS: $$ WITH BIG DATA

Trends
Obstacles

Positioning
Future

44_ Contributions _ OBSTACLES

Trends
Obstacles

Positioning
Future The biggest obstacle we’re running into is  

not knowing what’s possible.
“ “

Praveen Kankariya, the founder of Impetus Technologies

45_ Contributions _ POSITIONING

Trends
Obstacles

Positioning
Future Flamingo

EXPERIMENT
PLATFORM

SINGLE POINT APPROACH

46_ Contributions _ POSITIONING

Trends
Obstacles

Positioning
Future Even a simple monitoring tool may be

a great indicator to tell what can be done
and what can’t be done.

47_ Contributions _ FUTURE

Trends
Obstacles

Positioning
Future

“Software as a Service”

48_ Contributions _ FUTURE

Trends
Obstacles

Positioning
Future

“Extreme Abstraction”

49

PROJECT
MANAGEMENT

PART_06

50_ Management _ TEAM

Team
Methodology

Objectives
Metrics

TEAM _ ALPHADOOP

the hadoop master

the spring master

SEUNGHYO
KANG

JARYONG
LEE

YOUNGJAE
CHANG the sencha master

RESTful Server

Visualization

Metric Analysis

51_ Management _ METHODOLOGY

Team
Methodology

Objectives
Metrics

AGILE APPROACH

1 SPRINT = 2 WEEKS

TOTAL 5 SPRINTS along the semester

52_ Management _ OBJECTIVES

Team
Methodology

Objectives
Metrics

O1: Set up an environment for Flamingo

O2: Define Kafka measurement metrics, visualization forms

O3: Implement API server which provides collected metrics

O4: Implement charts with Sencha

O5: Integrate with Flamingo Ecosystem

O6: Define Zookeeper measurement metric, visualization

O7: Implement a Zookeeper monitoring module on Flamingo

SPRINT 1

SPRINT 2

SPRINT 3

SPRINT 4

SPRINT 5

M1

M2

KAFKA MODULE

ZOOKEEPER MODULE

53_ Management _ OBJECTIVES

Team
Methodology

Objectives
Metrics

Objectives Spaces

O1: Set up an environment for Flamingo O

O2: Define Kafka measurement metrics, visualization forms O

O3: Implement API server which provides collected metrics O

O4: Implement charts with Sencha O

O5: Integrate with Flamingo Ecosystem X

O6: Define Zookeeper measurement metric, visualization O

O7: Implement a Zookeeper monitoring module on Flamingo X

M11. Requirement
compliance

M12. Requirement
traceability

Collection step Version Date
Inspection

time
(min.)

UCR ICP ICT
(해당 단계)
요구사항 수

설계/코딩에
반영된

요구사항 수

SPRINT#3
v1a 4/27 - 2 0 0 3 1
v1b 5/8 - 2 0 0 3 3

SPRINT#4
v2a 5/9 20 1 0 0 3 1
v2b 5/16 20 1 1 1 3 3

SPRINT#5
v2a 5/23 20 0 0 0 3 1
v2b 6/7 20 0 0 0 3 3

Metric Analysis

Sprint#1~2 is for research, environment setup

Requirements clearly
understood

Kafka, Zookeepr JMX

M13. Requirement change
rate M31. Test coverage

Collection step Version Date
Inspection

time
(min.)

(이전 단계)
Baseline 요구
사항 수

변경된
요구사항 수

(해당 단계)
요구사항 수

요구사항 대비
테스트 통과

수

SPRINT#3
v1a 4/27 - 3 0 2 2

v1b 5/8 - 2 1 3 2

SPRINT#4
v2a 5/9 20 3 0 3 1

v2b 5/16 20 3 0 3 3

SPRINT#5
v2a 5/23 20 3 0 2 1

v2b 6/7 20 3 0 2 2

Metric Analysis

Kafka, Zookeeper

M21. Fault density M22. Bad fix rate

Collection step Version Date
Inspection

time
(min.)

결함 수 결함제거노력
(hour)

전체 결함 수 Side-effect 발생 수

SPRINT#3
v1a 4/27 - 0 0

0
0

v1b 5/8 - 0 0 0

SPRINT#4
v2a 5/9 20 0 0

0
0

v2b 5/16 20 0 0 0

SPRINT#5
v2a 5/23 20 0 0

0
0

v2b 6/7 20 0 0 0

Metric Analysis
Not working code

About 10,000 inspection points
➔ Because of extra library

(Ext.js, d3.js etc)

Only Performed Code Cleanup
➔ Reduced to 8,651

Metric Analysis

Requirements Specified Done
Built as a part of Flamingo system - O

Monitor and Report in Real-time
Implement Websocket writer O

Connect Websocket writer to JMX
Kafka O
Zookeeper X

Utilize JVM ecosystem - O
Visualize the metrics, avoid numbers Using d3.js, show metrics with graphs O

Save metrics into Database
Implement RRD4j O

Connect RRD4j writer to JMX
Kafka O
Zookeeper X

Special caution on log management Timeline O

59

DEMONSTRATION
PART_07

60_ Demonstration _ SCENARIO

Scenario
Demo KAFKA

fast-messages

summary-markers

two topics

producer

change in
max lag

docker

61

fast-messages

_ Demonstration _ SCENARIO

Scenario
Demo KAFKA

fast-messages

summary-markers

two topics

producer

producer

producer

producer

producer

producer

change in
max lag

docker

62_ Demonstration _ DEMO

Scenario
Demo

63

END

THANK YOU
FOR LISTENING

